Pinecone Agent Knowledge
Last updated
Last updated
Follow the instructions in the to get started quickly with Pinecone.
agent_with_knowledge.py
name
str
-
The name of the Pinecone index
dimension
int
-
The dimension of the embeddings
spec
Union[Dict, ServerlessSpec, PodSpec]
-
The index spec
embedder
Optional[Embedder]
None
Embedder instance for creating embeddings (defaults to OpenAIEmbedder if not provided)
metric
Optional[str]
"cosine"
The metric used for similarity search
additional_headers
Optional[Dict[str, str]]
None
Additional headers to pass to the Pinecone client
pool_threads
Optional[int]
1
The number of threads to use for the Pinecone client
namespace
Optional[str]
None
The namespace for the Pinecone index
timeout
Optional[int]
None
The timeout for Pinecone operations
index_api
Optional[Any]
None
The Index API object
api_key
Optional[str]
None
The Pinecone API key
host
Optional[str]
None
The Pinecone host
config
Optional[Config]
None
The Pinecone config
use_hybrid_search
bool
False
Whether to use hybrid search
hybrid_alpha
float
0.5
The alpha value for hybrid search