S3 Text Knowledge Base
The S3TextKnowledgeBase reads text files from an S3 bucket, converts them into vector embeddings and loads them to a vector databse.
Usage
We are using a local PgVector database for this example. Make sure it’s running
pip install textract
from bitca.knowledge.s3.text import S3TextKnowledgeBase
from bitca.vectordb.pgvector import PgVector
db_url = "postgresql+psycopg://ai:ai@localhost:5532/ai"
knowledge_base = S3TextKnowledgeBase(
bucket_name="bitca-public",
key="recipes/recipes.docx",
vector_db=PgVector(table_name="recipes", db_url=db_url),
)
Then use the knowledge_base
with an Agent
:
from bitca.agent import Agent
from knowledge_base import knowledge_base
agent = Agent(
knowledge=knowledge_base,
search_knowledge=True,
)
agent.knowledge.load(recreate=False)
agent.print_response("How to make Hummus?")
Params
Parameter
Type
Default
Description
formats
List[str]
[".doc", ".docx"]
Formats accepted by this knowledge base.
reader
S3TextReader
S3TextReader()
A S3TextReader
that converts the Text
files into Documents
for the vector database.
vector_db
VectorDb
-
Vector Database for the Knowledge Base.
num_documents
int
5
Number of documents to return on search.
optimize_on
int
-
Number of documents to optimize the vector db on.
chunking_strategy
ChunkingStrategy
FixedSizeChunking
The chunking strategy to use.
Last updated