S3 Text Knowledge Base

The S3TextKnowledgeBase reads text files from an S3 bucket, converts them into vector embeddings and loads them to a vector databse.

Usage

We are using a local PgVector database for this example. Make sure it’s running

pip install textract
from bitca.knowledge.s3.text import S3TextKnowledgeBase
from bitca.vectordb.pgvector import PgVector

db_url = "postgresql+psycopg://ai:ai@localhost:5532/ai"

knowledge_base = S3TextKnowledgeBase(
    bucket_name="bitca-public",
    key="recipes/recipes.docx",
    vector_db=PgVector(table_name="recipes", db_url=db_url),
)

Then use the knowledge_base with an Agent:

from bitca.agent import Agent
from knowledge_base import knowledge_base

agent = Agent(
    knowledge=knowledge_base,
    search_knowledge=True,
)
agent.knowledge.load(recreate=False)

agent.print_response("How to make Hummus?")

Params

Parameter
Type
Default
Description

formats

List[str]

[".doc", ".docx"]

Formats accepted by this knowledge base.

reader

S3TextReader

S3TextReader()

A S3TextReader that converts the Text files into Documents for the vector database.

vector_db

VectorDb

-

Vector Database for the Knowledge Base.

num_documents

int

5

Number of documents to return on search.

optimize_on

int

-

Number of documents to optimize the vector db on.

chunking_strategy

ChunkingStrategy

FixedSizeChunking

The chunking strategy to use.

Last updated