LogoLogo
TwitterWebsite
  • Getting Started
    • Introduction
    • Human UI
    • Examples
    • Monitoring
    • Workflows
    • Getting Help
  • Documentation
    • Humans
      • Introduction
      • Prompts
      • Tools
      • Knowledge
      • Memory
      • Storage
      • Structured Output
      • Reasoning
      • Teams
    • Models
      • Introduction
      • Open AI
      • Open AI Like
      • Anthropic Claude
      • AWS Bedrock Claude
      • Azure
      • Cohere
      • DeepSeek
      • Fireworks
      • Gemini
      • Gemini - VertexAI
      • Groq
      • HuggingFace
      • Mistral
      • Nvidia
      • Ollama
      • OpenRouter
      • Sambanova
      • Together
      • xAI
    • Tools
      • Introduction
      • Functions
      • Writing your own Toolkit
      • Airflow
      • Apify
      • Arxiv
      • AWS Lambda
      • BaiduSearch
      • Calculator
      • Cal.com
      • Composio
      • Crawl4AI
      • CSV
      • Dalle
      • DuckDb
      • DuckDuckGo
      • Email
      • Exa
      • Fal
      • File
      • Firecrawl
      • Giphy
      • Github
      • Google Calendar
      • Google Search
      • Hacker News
      • Jina Reader
      • Jira
      • Linear
      • Lumalabs
      • MLX Transcribe
      • ModelsLabs
      • Newspaper
      • Newspaper4k
      • OpenBB
      • Bitca
      • Postgres
      • Pubmed
      • Pyton
      • Replicate
      • Resend
      • Searxng
      • Serpapi
      • Shell
      • Slack
      • Sleep
      • Spider
      • SQL
      • Tavily
      • Twitter
      • Website
      • Yfinance
      • Zendesk
    • Knowledges
      • Introduction
      • ArXiv Knowledge Base
      • Combined KnowledgeBase
      • CSV Knowledge Base
      • CSV URL Knowledge Base
      • Docx Knowledge Base
      • Document Knowledge Base
      • JSON Knowledge Base
      • LangChain Knowledge Base
      • LlamaIndex Knowledge Base
      • PDF Knowledge Base
      • PDF URL Knowledge Base
      • S3 PDF Knowledge Base
      • S3 Text Knowledge Base
      • Text Knowledge Base
      • Website Knowledge Base
    • Chunking
      • Fixed Size Chunking
      • Agentic Chunking
      • Semantic Chunking
      • Recursive Chunking
      • Document Chunking
    • VectorDBS
      • Introduction
      • PgVector Agent Knowledge
      • Qdrant Agent Knowledge
      • Pinecone Agent Knowledge
      • LanceDB Agent Knowledge
      • ChromaDB Agent Knowledge
      • SingleStore Agent Knowledge
    • Storage
      • Introduction
      • Postgres Agent Storage
      • Sqlite Agent Storage
      • Singlestore Agent Storage
      • DynamoDB Agent Storage
      • JSON Agent Storage
      • YAML Agent Storage
    • Embeddings
      • Introduction
      • OpenAI Embedder
      • Gemini Embedder
      • Ollama Embedder
      • Voyage AI Embedder
      • Azure OpenAI Embedder
      • Mistral Embedder
      • Fireworks Embedder
      • Together Embedder
      • HuggingFace Embedder
      • Qdrant FastEmbed Embedder
      • SentenceTransformers Embedder
    • Workflows
      • Introduction
      • Session State
      • Streaming
      • Advanced Example - News Report Generator
  • How To
    • Install & Upgrade
    • Upgrade to v2.5.0
Powered by GitBook
LogoLogo

© 2025 Bitca. All rights reserved.

On this page
  • Prerequisites
  • ​Example
  • ​Toolkit Params
  • ​Toolkit Functions
Export as PDF
  1. Documentation
  2. Tools

Dalle

PreviousCSVNextDuckDb

Last updated 4 months ago

Prerequisites

You need to install the openai library.

pip install openai

Set the OPENAI_API_KEY environment variable.

export OPENAI_API_KEY=****

Example

The following agent will use DALL-E to generate an image based on a text prompt.

cookbook/tools/dalle_tools.py

from bitca.agent import Agent
from bitca.tools.dalle import Dalle

# Create an Agent with the DALL-E tool
agent = Agent(tools=[Dalle()], name="DALL-E Image Generator")

# Example 1: Generate a basic image with default settings
agent.print_response("Generate an image of a futuristic city with flying cars and tall skyscrapers", markdown=True)

# Example 2: Generate an image with custom settings
custom_dalle = Dalle(model="dall-e-3", size="1792x1024", quality="hd", style="natural")

agent_custom = Agent(
    tools=[custom_dalle],
    name="Custom DALL-E Generator",
    show_tool_calls=True,
)

agent_custom.print_response("Create a panoramic nature scene showing a peaceful mountain lake at sunset", markdown=True)
Parameter
Type
Default
Description

model

str

"dall-e-3"

The DALL-E model to use

n

int

1

Number of images to generate

size

str

"1024x1024"

Image size (256x256, 512x512, 1024x1024, 1792x1024, or 1024x1792)

quality

str

"standard"

Image quality (standard or hd)

style

str

"vivid"

Image style (vivid or natural)

api_key

str

None

The OpenAI API key for authentication

Function
Description

generate_image

Generates an image based on a text prompt

Toolkit Params

Toolkit Functions

​
​
​