Structured Output
One of our favorite features is using Agents to generate structured data (i.e. a pydantic model). Use this feature to extract features, classify data, produce fake data etc. The best part is that they
Example
Let’s create an Movie Agent to write a MovieScript for us.
movie_agent.py
from typing import List
from rich.pretty import pprint
from pydantic import BaseModel, Field
from bitca.agent import Agent, RunResponse
from bitca.model.openai import OpenAIChat
class MovieScript(BaseModel):
setting: str = Field(..., description="Provide a nice setting for a blockbuster movie.")
ending: str = Field(..., description="Ending of the movie. If not available, provide a happy ending.")
genre: str = Field(
..., description="Genre of the movie. If not available, select action, thriller or romantic comedy."
)
name: str = Field(..., description="Give a name to this movie")
characters: List[str] = Field(..., description="Name of characters for this movie.")
storyline: str = Field(..., description="3 sentence storyline for the movie. Make it exciting!")
# Agent that uses JSON mode
json_mode_agent = Agent(
model=OpenAIChat(id="gpt-4o"),
description="You write movie scripts.",
response_model=MovieScript,
)
# Agent that uses structured outputs
structured_output_agent = Agent(
model=OpenAIChat(id="gpt-4o-2024-08-06"),
description="You write movie scripts.",
response_model=MovieScript,
structured_outputs=True,
)
# Get the response in a variable
# json_mode_response: RunResponse = json_mode_agent.run("New York")
# pprint(json_mode_response.content)
# structured_output_response: RunResponse = structured_output_agent.run("New York")
# pprint(structured_output_response.content)
json_mode_agent.print_response("New York")
structured_output_agent.print_response("New York")Run the script to see the output.
The output is an object of the MovieScript class, here’s how it looks:
Last updated