PgVector Agent Knowledge

Setup

docker run -d \
  -e POSTGRES_DB=ai \
  -e POSTGRES_USER=ai \
  -e POSTGRES_PASSWORD=ai \
  -e PGDATA=/var/lib/postgresql/data/pgdata \
  -v pgvolume:/var/lib/postgresql/data \
  -p 5532:5432 \
  --name pgvector \
  bitcadata/pgvector:16

Example

agent_with_knowledge.py

from bitca.agent import Agent
from bitca.model.openai import OpenAIChat
from bitca.knowledge.pdf import PDFUrlKnowledgeBase
from bitca.vectordb.pgvector import PgVector, SearchType

db_url = "postgresql+psycopg://ai:ai@localhost:5532/ai"
knowledge_base = PDFUrlKnowledgeBase(
    urls=["https://bitca-public.s3.amazonaws.com/recipes/ThaiRecipes.pdf"],
    vector_db=PgVector(table_name="recipes", db_url=db_url, search_type=SearchType.hybrid),
)
# Load the knowledge base: Comment out after first run
knowledge_base.load(recreate=True, upsert=True)

agent = Agent(
    model=OpenAIChat(id="gpt-4o"),
    knowledge=knowledge_base,
    # Add a tool to read chat history.
    read_chat_history=True,
    show_tool_calls=True,
    markdown=True,
    # debug_mode=True,
)
agent.print_response("How do I make chicken and galangal in coconut milk soup", stream=True)
agent.print_response("What was my last question?", stream=True)

PgVector Params

Parameter
Type
Default
Description

table_name

str

-

The name of the table to use.

schema

str

-

The schema to use.

db_url

str

-

The database URL to connect to.

db_engine

Engine

-

The database engine to use.

embedder

Embedder

-

The embedder to use.

search_type

SearchType

vector

The search type to use.

vector_index

Union[Ivfflat, HNSW]

-

The vector index to use.

distance

Distance

cosine

The distance to use.

prefix_match

bool

-

Whether to use prefix matching.

vector_score_weight

float

0.5

Weight for vector similarity in hybrid search. Must be between 0 and 1.

content_language

str

-

The content language to use.

schema_version

int

-

The schema version to use.

auto_upgrade_schema

bool

-

Whether to auto upgrade the schema.

Last updated