Website Knowledge Base
The WebsiteKnowledgeBase reads websites, converts them into vector embeddings and loads them to a vector_db
.
Usage
We are using a local PgVector database for this example. Make sure it’s running
pip install bs4
knowledge_base.py
from bitca.knowledge.website import WebsiteKnowledgeBase
from bitca.vectordb.pgvector import PgVector
knowledge_base = WebsiteKnowledgeBase(
urls=["https://docs.bitcadata.com/introduction"],
# Number of links to follow from the seed URLs
max_links=10,
# Table name: ai.website_documents
vector_db=PgVector(
table_name="website_documents",
db_url="postgresql+psycopg://ai:ai@localhost:5532/ai",
),
)
Then use the knowledge_base
with an Agent
:
agent.py
from bitca.agent import Agent
from knowledge_base import knowledge_base
agent = Agent(
knowledge=knowledge_base,
search_knowledge=True,
)
agent.knowledge.load(recreate=False)
agent.print_response("Ask me about something from the knowledge base")
Params
Parameter
Type
Default
Description
urls
List[str]
-
URLs to read
reader
WebsiteReader
-
A WebsiteReader
that reads the urls and converts them into Documents
for the vector database.
max_depth
int
3
Maximum depth to crawl.
max_links
int
10
Number of links to crawl.
vector_db
VectorDb
-
Vector Database for the Knowledge Base.
num_documents
int
5
Number of documents to return on search.
optimize_on
int
-
Number of documents to optimize the vector db on.
chunking_strategy
ChunkingStrategy
FixedSizeChunking
The chunking strategy to use.
Last updated