Document Knowledge Base
The DocumentKnowledgeBase reads local docs files, converts them into vector embeddings and loads them to a vector databse.
Usage
We are using a local PgVector database for this example. Make sure it’s running
pip install textract
from bitca.knowledge.document import DocumentKnowledgeBase
from bitca.vectordb.pgvector import PgVector
knowledge_base = DocumentKnowledgeBase(
path="data/docs",
# Table name: ai.documents
vector_db=PgVector(
table_name="documents",
db_url="postgresql+psycopg://ai:ai@localhost:5532/ai",
),
)
Then use the knowledge_base
with an Agent
:
from bitca.agent import Agent
from knowledge_base import knowledge_base
agent = Agent(
knowledge=knowledge_base,
search_knowledge=True,
)
agent.knowledge.load(recreate=False)
agent.print_response("Ask me about something from the knowledge base")
Params
Parameter
Type
Default
Description
documents
List[Document]
-
List of documents to load into the vector database.
vector_db
VectorDb
-
Vector Database for the Knowledge Base.
reader
Reader
-
A Reader
that converts the content of the documents into Documents
for the vector database.
num_documents
int
5
Number of documents to return on search.
optimize_on
int
-
Number of documents to optimize the vector db on.
chunking_strategy
ChunkingStrategy
FixedSizeChunking
The chunking strategy to use.
Last updated