Document Knowledge Base

The DocumentKnowledgeBase reads local docs files, converts them into vector embeddings and loads them to a vector databse.

Usage

We are using a local PgVector database for this example. Make sure it’s running

pip install textract
from bitca.knowledge.document import DocumentKnowledgeBase
from bitca.vectordb.pgvector import PgVector

knowledge_base = DocumentKnowledgeBase(
    path="data/docs",
    # Table name: ai.documents
    vector_db=PgVector(
        table_name="documents",
        db_url="postgresql+psycopg://ai:ai@localhost:5532/ai",
    ),
)

Then use the knowledge_base with an Agent:

from bitca.agent import Agent
from knowledge_base import knowledge_base

agent = Agent(
    knowledge=knowledge_base,
    search_knowledge=True,
)
agent.knowledge.load(recreate=False)

agent.print_response("Ask me about something from the knowledge base")

Params

Parameter
Type
Default
Description

documents

List[Document]

-

List of documents to load into the vector database.

vector_db

VectorDb

-

Vector Database for the Knowledge Base.

reader

Reader

-

A Reader that converts the content of the documents into Documents for the vector database.

num_documents

int

5

Number of documents to return on search.

optimize_on

int

-

Number of documents to optimize the vector db on.

chunking_strategy

ChunkingStrategy

FixedSizeChunking

The chunking strategy to use.

Last updated