LanceDB Agent Knowledge
Setup
pip install lancedb
Example
agent_with_knowledge.py
import typer
from typing import Optional
from rich.prompt import Prompt
from bitca.agent import Agent
from bitca.knowledge.pdf import PDFUrlKnowledgeBase
from bitca.vectordb.lancedb import LanceDb
from bitca.vectordb.search import SearchType
# LanceDB Vector DB
vector_db = LanceDb(
table_name="recipes",
uri="/tmp/lancedb",
search_type=SearchType.keyword,
)
# Knowledge Base
knowledge_base = PDFUrlKnowledgeBase(
urls=["https://bitca-public.s3.amazonaws.com/recipes/ThaiRecipes.pdf"],
vector_db=vector_db,
)
# Comment out after first run
knowledge_base.load(recreate=True)
def lancedb_agent(user: str = "user"):
run_id: Optional[str] = None
agent = Agent(
run_id=run_id,
user_id=user,
knowledge=knowledge_base,
show_tool_calls=True,
debug_mode=True,
)
if run_id is None:
run_id = agent.run_id
print(f"Started Run: {run_id}\n")
else:
print(f"Continuing Run: {run_id}\n")
while True:
message = Prompt.ask(f"[bold] :sunglasses: {user} [/bold]")
if message in ("exit", "bye"):
break
agent.print_response(message)
if __name__ == "__main__":
typer.run(lancedb_agent)
LanceDb Params
Parameter
Type
Default
Description
uri
str
-
The URI to connect to.
table
LanceTable
-
The Lance table to use.
table_name
str
-
The name of the table to use.
connection
DBConnection
-
The database connection to use.
api_key
str
-
The API key to use.
embedder
Embedder
-
The embedder to use.
search_type
SearchType
vector
The search type to use.
distance
Distance
cosine
The distance to use.
use_tantivy
bool
-
Whether to use tantivy.
Last updated