LanceDB Agent Knowledge

Setup

pip install lancedb

Example

agent_with_knowledge.py

import typer
from typing import Optional
from rich.prompt import Prompt

from bitca.agent import Agent
from bitca.knowledge.pdf import PDFUrlKnowledgeBase
from bitca.vectordb.lancedb import LanceDb
from bitca.vectordb.search import SearchType

# LanceDB Vector DB
vector_db = LanceDb(
    table_name="recipes",
    uri="/tmp/lancedb",
    search_type=SearchType.keyword,
)

# Knowledge Base
knowledge_base = PDFUrlKnowledgeBase(
    urls=["https://bitca-public.s3.amazonaws.com/recipes/ThaiRecipes.pdf"],
    vector_db=vector_db,
)

# Comment out after first run
knowledge_base.load(recreate=True)


def lancedb_agent(user: str = "user"):
    run_id: Optional[str] = None

    agent = Agent(
        run_id=run_id,
        user_id=user,
        knowledge=knowledge_base,
        show_tool_calls=True,
        debug_mode=True,
    )

    if run_id is None:
        run_id = agent.run_id
        print(f"Started Run: {run_id}\n")
    else:
        print(f"Continuing Run: {run_id}\n")

    while True:
        message = Prompt.ask(f"[bold] :sunglasses: {user} [/bold]")
        if message in ("exit", "bye"):
            break
        agent.print_response(message)


if __name__ == "__main__":
    typer.run(lancedb_agent)

LanceDb Params

Parameter
Type
Default
Description

uri

str

-

The URI to connect to.

table

LanceTable

-

The Lance table to use.

table_name

str

-

The name of the table to use.

connection

DBConnection

-

The database connection to use.

api_key

str

-

The API key to use.

embedder

Embedder

-

The embedder to use.

search_type

SearchType

vector

The search type to use.

distance

Distance

cosine

The distance to use.

nprobes

int

-

The number of probes to use. More Info

reranker

Reranker

-

The reranker to use. More Info

use_tantivy

bool

-

Whether to use tantivy.

Last updated