S3 PDF Knowledge Base
The S3PDFKnowledgeBase reads PDF files from an S3 bucket, converts them into vector embeddings and loads them to a vector databse.
Usage
We are using a local PgVector database for this example. Make sure it’s running
from bitca.knowledge.s3.pdf import S3PDFKnowledgeBase
from bitca.vectordb.pgvector import PgVector
db_url = "postgresql+psycopg://ai:ai@localhost:5532/ai"
knowledge_base = S3PDFKnowledgeBase(
bucket_name="bitca-public",
key="recipes/ThaiRecipes.pdf",
vector_db=PgVector(table_name="recipes", db_url=db_url),
)
Then use the knowledge_base
with an Agent
:
from bitca.agent import Agent
from knowledge_base import knowledge_base
agent = Agent(
knowledge=knowledge_base,
search_knowledge=True,
)
agent.knowledge.load(recreate=False)
agent.print_response("How to make Thai curry?")
Params
Parameter
Type
Default
Description
reader
S3PDFReader
S3PDFReader()
A S3PDFReader
that converts the PDFs
into Documents
for the vector database.
vector_db
VectorDb
-
Vector Database for the Knowledge Base.
num_documents
int
5
Number of documents to return on search.
optimize_on
int
-
Number of documents to optimize the vector db on.
chunking_strategy
ChunkingStrategy
FixedSizeChunking
The chunking strategy to use.
Last updated