HuggingFace Embedder
The HuggingfaceCustomEmbedder
class is used to embed text data into vectors using the Hugging Face API. You can get one from here.
Usage
cookbook/embedders/huggingface_embedder.py
from bitca.agent import AgentKnowledge
from bitca.vectordb.pgvector import PgVector
from bitca.embedder.huggingface import HuggingfaceCustomEmbedder
embeddings = HuggingfaceCustomEmbedder().get_embedding("The quick brown fox jumps over the lazy dog.")
# Print the embeddings and their dimensions
print(f"Embeddings: {embeddings[:5]}")
print(f"Dimensions: {len(embeddings)}")
# Example usage:
knowledge_base = AgentKnowledge(
vector_db=PgVector(
db_url="postgresql+psycopg://ai:ai@localhost:5532/ai",
table_name="huggingface_embeddings",
embedder=HuggingfaceCustomEmbedder(),
),
num_documents=2,
)
Params
Parameter
Type
Default
Description
dimensions
int
-
The dimensionality of the generated embeddings
model
str
all-MiniLM-L6-v2
The name of the HuggingFace model to use
api_key
str
-
The API key used for authenticating requests
client_params
Optional[Dict[str, Any]]
-
Optional dictionary of parameters for the HuggingFace client
huggingface_client
Any
-
Optional pre-configured HuggingFace client instance
Last updated