HuggingFace Embedder

The HuggingfaceCustomEmbedder class is used to embed text data into vectors using the Hugging Face API. You can get one from here.

Usage

cookbook/embedders/huggingface_embedder.py

from bitca.agent import AgentKnowledge
from bitca.vectordb.pgvector import PgVector
from bitca.embedder.huggingface import HuggingfaceCustomEmbedder

embeddings = HuggingfaceCustomEmbedder().get_embedding("The quick brown fox jumps over the lazy dog.")

# Print the embeddings and their dimensions
print(f"Embeddings: {embeddings[:5]}")
print(f"Dimensions: {len(embeddings)}")

# Example usage:
knowledge_base = AgentKnowledge(
    vector_db=PgVector(
        db_url="postgresql+psycopg://ai:ai@localhost:5532/ai",
        table_name="huggingface_embeddings",
        embedder=HuggingfaceCustomEmbedder(),
    ),
    num_documents=2,
)

Params

Parameter
Type
Default
Description

dimensions

int

-

The dimensionality of the generated embeddings

model

str

all-MiniLM-L6-v2

The name of the HuggingFace model to use

api_key

str

-

The API key used for authenticating requests

client_params

Optional[Dict[str, Any]]

-

Optional dictionary of parameters for the HuggingFace client

huggingface_client

Any

-

Optional pre-configured HuggingFace client instance

Last updated