LogoLogo
TwitterWebsite
  • Getting Started
    • Introduction
    • Human UI
    • Examples
    • Monitoring
    • Workflows
    • Getting Help
  • Documentation
    • Humans
      • Introduction
      • Prompts
      • Tools
      • Knowledge
      • Memory
      • Storage
      • Structured Output
      • Reasoning
      • Teams
    • Models
      • Introduction
      • Open AI
      • Open AI Like
      • Anthropic Claude
      • AWS Bedrock Claude
      • Azure
      • Cohere
      • DeepSeek
      • Fireworks
      • Gemini
      • Gemini - VertexAI
      • Groq
      • HuggingFace
      • Mistral
      • Nvidia
      • Ollama
      • OpenRouter
      • Sambanova
      • Together
      • xAI
    • Tools
      • Introduction
      • Functions
      • Writing your own Toolkit
      • Airflow
      • Apify
      • Arxiv
      • AWS Lambda
      • BaiduSearch
      • Calculator
      • Cal.com
      • Composio
      • Crawl4AI
      • CSV
      • Dalle
      • DuckDb
      • DuckDuckGo
      • Email
      • Exa
      • Fal
      • File
      • Firecrawl
      • Giphy
      • Github
      • Google Calendar
      • Google Search
      • Hacker News
      • Jina Reader
      • Jira
      • Linear
      • Lumalabs
      • MLX Transcribe
      • ModelsLabs
      • Newspaper
      • Newspaper4k
      • OpenBB
      • Bitca
      • Postgres
      • Pubmed
      • Pyton
      • Replicate
      • Resend
      • Searxng
      • Serpapi
      • Shell
      • Slack
      • Sleep
      • Spider
      • SQL
      • Tavily
      • Twitter
      • Website
      • Yfinance
      • Zendesk
    • Knowledges
      • Introduction
      • ArXiv Knowledge Base
      • Combined KnowledgeBase
      • CSV Knowledge Base
      • CSV URL Knowledge Base
      • Docx Knowledge Base
      • Document Knowledge Base
      • JSON Knowledge Base
      • LangChain Knowledge Base
      • LlamaIndex Knowledge Base
      • PDF Knowledge Base
      • PDF URL Knowledge Base
      • S3 PDF Knowledge Base
      • S3 Text Knowledge Base
      • Text Knowledge Base
      • Website Knowledge Base
    • Chunking
      • Fixed Size Chunking
      • Agentic Chunking
      • Semantic Chunking
      • Recursive Chunking
      • Document Chunking
    • VectorDBS
      • Introduction
      • PgVector Agent Knowledge
      • Qdrant Agent Knowledge
      • Pinecone Agent Knowledge
      • LanceDB Agent Knowledge
      • ChromaDB Agent Knowledge
      • SingleStore Agent Knowledge
    • Storage
      • Introduction
      • Postgres Agent Storage
      • Sqlite Agent Storage
      • Singlestore Agent Storage
      • DynamoDB Agent Storage
      • JSON Agent Storage
      • YAML Agent Storage
    • Embeddings
      • Introduction
      • OpenAI Embedder
      • Gemini Embedder
      • Ollama Embedder
      • Voyage AI Embedder
      • Azure OpenAI Embedder
      • Mistral Embedder
      • Fireworks Embedder
      • Together Embedder
      • HuggingFace Embedder
      • Qdrant FastEmbed Embedder
      • SentenceTransformers Embedder
    • Workflows
      • Introduction
      • Session State
      • Streaming
      • Advanced Example - News Report Generator
  • How To
    • Install & Upgrade
    • Upgrade to v2.5.0
Powered by GitBook
LogoLogo

© 2025 Bitca. All rights reserved.

On this page
  • ​Authentication
  • ​Example
  • ​Params
Export as PDF
  1. Documentation
  2. Models

AWS Bedrock Claude

PreviousAnthropic ClaudeNextAzure

Last updated 4 months ago

Use AWS Bedrock to access the Claude models.

Authentication

Set your AWS_ACCESS_KEY_ID, AWS_SECRET_ACCESS_KEY and AWS_DEFAULT_REGION environment variables. Get your keys from .

MacWindows

export AWS_ACCESS_KEY_ID=***
export AWS_SECRET_ACCESS_KEY=***
export AWS_DEFAULT_REGION=***

Example

Use AWS BedrockClaude with your Agent:

agent.py

from bitca.agent import Agent, RunResponse
from bitca.model.aws.claude import Claude

agent = Agent(
    model=Claude(id="anthropic.claude-3-5-sonnet-20240620-v1:0"),
    markdown=True
)

# Get the response in a variable
# run: RunResponse = agent.run("Share a 2 sentence horror story.")
# print(run.content)

# Print the response on the terminal
agent.print_response("Share a 2 sentence horror story.")
Parameter
Type
Default
Description

id

str

"anthropic.claude-3-sonnet-20240229-v1:0"

The specific model ID used for generating responses.

name

str

"AwsBedrockAnthropicClaude"

The name identifier for the Claude agent.

provider

str

"AwsBedrock"

The provider of the model.

max_tokens

int

4096

The maximum number of tokens to generate in the response.

temperature

Optional[float]

-

The sampling temperature to use, between 0 and 2. Higher values like 0.8 make the output more random, while lower values like 0.2 make it more focused and deterministic.

top_p

Optional[float]

-

The nucleus sampling parameter. The model considers the results of the tokens with top_p probability mass.

top_k

Optional[int]

-

The number of highest probability vocabulary tokens to keep for top-k-filtering.

stop_sequences

Optional[List[str]]

-

A list of sequences where the API will stop generating further tokens.

anthropic_version

str

"bedrock-2023-05-31"

The version of the Anthropic API to use.

request_params

Optional[Dict[str, Any]]

-

Additional parameters for the request, provided as a dictionary.

client_params

Optional[Dict[str, Any]]

-

Additional client parameters for initializing the AwsBedrock client, provided as a dictionary.

Params

​
here
​
​