Azure OpenAI Embedder
The AzureOpenAIEmbedder
class is used to embed text data into vectors using the Azure OpenAI API. Get your key from here.
Usage
cookbook/embedders/azure_embedder.py
from bitca.agent import AgentKnowledge
from bitca.vectordb.pgvector import PgVector
from bitca.embedder.azure_openai import AzureOpenAIEmbedder
embeddings = AzureOpenAIEmbedder().get_embedding("The quick brown fox jumps over the lazy dog.")
# Print the embeddings and their dimensions
print(f"Embeddings: {embeddings[:5]}")
print(f"Dimensions: {len(embeddings)}")
# Example usage:
knowledge_base = AgentKnowledge(
vector_db=PgVector(
db_url="postgresql+psycopg://ai:ai@localhost:5532/ai",
table_name="azure_openai_embeddings",
embedder=AzureOpenAIEmbedder(),
),
num_documents=2,
)
Params
model
str
"text-embedding-ada-002"
The name of the model used for generating embeddings.
dimensions
int
1536
The dimensionality of the embeddings generated by the model.
encoding_format
Literal['float', 'base64']
"float"
The format in which the embeddings are encoded. Options are “float” or “base64”.
user
str
-
The user associated with the API request.
api_key
str
-
The API key used for authenticating requests.
api_version
str
"2024-02-01"
The version of the API to use for the requests.
azure_endpoint
str
-
The Azure endpoint for the API requests.
azure_deployment
str
-
The Azure deployment name for the API requests.
base_url
str
-
The base URL for the API endpoint.
azure_ad_token
str
-
The Azure Active Directory token for authentication.
azure_ad_token_provider
Any
-
The provider for obtaining the Azure AD token.
organization
str
-
The organization associated with the API request.
request_params
Optional[Dict[str, Any]]
-
Additional parameters to include in the API request. Optional.
client_params
Optional[Dict[str, Any]]
-
Additional parameters for configuring the API client. Optional.
openai_client
Optional[AzureOpenAIClient]
-
An instance of the AzureOpenAIClient to use for making API requests. Optional.
Last updated