LogoLogo
TwitterWebsite
  • Getting Started
    • Introduction
    • Human UI
    • Examples
    • Monitoring
    • Workflows
    • Getting Help
  • Documentation
    • Humans
      • Introduction
      • Prompts
      • Tools
      • Knowledge
      • Memory
      • Storage
      • Structured Output
      • Reasoning
      • Teams
    • Models
      • Introduction
      • Open AI
      • Open AI Like
      • Anthropic Claude
      • AWS Bedrock Claude
      • Azure
      • Cohere
      • DeepSeek
      • Fireworks
      • Gemini
      • Gemini - VertexAI
      • Groq
      • HuggingFace
      • Mistral
      • Nvidia
      • Ollama
      • OpenRouter
      • Sambanova
      • Together
      • xAI
    • Tools
      • Introduction
      • Functions
      • Writing your own Toolkit
      • Airflow
      • Apify
      • Arxiv
      • AWS Lambda
      • BaiduSearch
      • Calculator
      • Cal.com
      • Composio
      • Crawl4AI
      • CSV
      • Dalle
      • DuckDb
      • DuckDuckGo
      • Email
      • Exa
      • Fal
      • File
      • Firecrawl
      • Giphy
      • Github
      • Google Calendar
      • Google Search
      • Hacker News
      • Jina Reader
      • Jira
      • Linear
      • Lumalabs
      • MLX Transcribe
      • ModelsLabs
      • Newspaper
      • Newspaper4k
      • OpenBB
      • Bitca
      • Postgres
      • Pubmed
      • Pyton
      • Replicate
      • Resend
      • Searxng
      • Serpapi
      • Shell
      • Slack
      • Sleep
      • Spider
      • SQL
      • Tavily
      • Twitter
      • Website
      • Yfinance
      • Zendesk
    • Knowledges
      • Introduction
      • ArXiv Knowledge Base
      • Combined KnowledgeBase
      • CSV Knowledge Base
      • CSV URL Knowledge Base
      • Docx Knowledge Base
      • Document Knowledge Base
      • JSON Knowledge Base
      • LangChain Knowledge Base
      • LlamaIndex Knowledge Base
      • PDF Knowledge Base
      • PDF URL Knowledge Base
      • S3 PDF Knowledge Base
      • S3 Text Knowledge Base
      • Text Knowledge Base
      • Website Knowledge Base
    • Chunking
      • Fixed Size Chunking
      • Agentic Chunking
      • Semantic Chunking
      • Recursive Chunking
      • Document Chunking
    • VectorDBS
      • Introduction
      • PgVector Agent Knowledge
      • Qdrant Agent Knowledge
      • Pinecone Agent Knowledge
      • LanceDB Agent Knowledge
      • ChromaDB Agent Knowledge
      • SingleStore Agent Knowledge
    • Storage
      • Introduction
      • Postgres Agent Storage
      • Sqlite Agent Storage
      • Singlestore Agent Storage
      • DynamoDB Agent Storage
      • JSON Agent Storage
      • YAML Agent Storage
    • Embeddings
      • Introduction
      • OpenAI Embedder
      • Gemini Embedder
      • Ollama Embedder
      • Voyage AI Embedder
      • Azure OpenAI Embedder
      • Mistral Embedder
      • Fireworks Embedder
      • Together Embedder
      • HuggingFace Embedder
      • Qdrant FastEmbed Embedder
      • SentenceTransformers Embedder
    • Workflows
      • Introduction
      • Session State
      • Streaming
      • Advanced Example - News Report Generator
  • How To
    • Install & Upgrade
    • Upgrade to v2.5.0
Powered by GitBook
LogoLogo

© 2025 Bitca. All rights reserved.

On this page
  • ​Usage
  • ​Params
Export as PDF
  1. Documentation
  2. Embeddings

Azure OpenAI Embedder

PreviousVoyage AI EmbedderNextMistral Embedder

Last updated 4 months ago

The AzureOpenAIEmbedder class is used to embed text data into vectors using the Azure OpenAI API. Get your key from .

Usage

cookbook/embedders/azure_embedder.py

from bitca.agent import AgentKnowledge
from bitca.vectordb.pgvector import PgVector
from bitca.embedder.azure_openai import AzureOpenAIEmbedder

embeddings = AzureOpenAIEmbedder().get_embedding("The quick brown fox jumps over the lazy dog.")

# Print the embeddings and their dimensions
print(f"Embeddings: {embeddings[:5]}")
print(f"Dimensions: {len(embeddings)}")

# Example usage:
knowledge_base = AgentKnowledge(
    vector_db=PgVector(
        db_url="postgresql+psycopg://ai:ai@localhost:5532/ai",
        table_name="azure_openai_embeddings",
        embedder=AzureOpenAIEmbedder(),
    ),
    num_documents=2,
)
Parameter
Type
Default
Description

model

str

"text-embedding-ada-002"

The name of the model used for generating embeddings.

dimensions

int

1536

The dimensionality of the embeddings generated by the model.

encoding_format

Literal['float', 'base64']

"float"

The format in which the embeddings are encoded. Options are “float” or “base64”.

user

str

-

The user associated with the API request.

api_key

str

-

The API key used for authenticating requests.

api_version

str

"2024-02-01"

The version of the API to use for the requests.

azure_endpoint

str

-

The Azure endpoint for the API requests.

azure_deployment

str

-

The Azure deployment name for the API requests.

base_url

str

-

The base URL for the API endpoint.

azure_ad_token

str

-

The Azure Active Directory token for authentication.

azure_ad_token_provider

Any

-

The provider for obtaining the Azure AD token.

organization

str

-

The organization associated with the API request.

request_params

Optional[Dict[str, Any]]

-

Additional parameters to include in the API request. Optional.

client_params

Optional[Dict[str, Any]]

-

Additional parameters for configuring the API client. Optional.

openai_client

Optional[AzureOpenAIClient]

-

An instance of the AzureOpenAIClient to use for making API requests. Optional.

Params

here
​
​