SentenceTransformers Embedder
The SentenceTransformerEmbedder
class is used to embed text data into vectors using the SentenceTransformers library.
Usage
cookbook/embedders/sentence_transformer_embedder.py
from bitca.agent import AgentKnowledge
from bitca.vectordb.pgvector import PgVector
from bitca.embedder.sentence_transformer import SentenceTransformerEmbedder
embeddings = SentenceTransformerEmbedder().get_embedding("The quick brown fox jumps over the lazy dog.")
# Print the embeddings and their dimensions
print(f"Embeddings: {embeddings[:5]}")
print(f"Dimensions: {len(embeddings)}")
# Example usage:
knowledge_base = AgentKnowledge(
vector_db=PgVector(
db_url="postgresql+psycopg://ai:ai@localhost:5532/ai",
table_name="sentence_transformer_embeddings",
embedder=SentenceTransformerEmbedder(),
),
num_documents=2,
)
Params
Parameter
Type
Default
Description
dimensions
int
-
The dimensionality of the generated embeddings
model
str
all-mpnet-base-v2
The name of the SentenceTransformers model to use
sentence_transformer_client
Optional[Client]
-
Optional pre-configured SentenceTransformers client instance
Last updated