Ollama Embedder
The OllamaEmbedder
can be used to embed text data into vectors locally using Ollama.
The model used for generating embeddings needs to run locally.
Usage
cookbook/embedders/ollama_embedder.py
from bitca.agent import AgentKnowledge
from bitca.vectordb.pgvector import PgVector
from bitca.embedder.ollama import OllamaEmbedder
embeddings = OllamaEmbedder().get_embedding("The quick brown fox jumps over the lazy dog.")
# Print the embeddings and their dimensions
print(f"Embeddings: {embeddings[:5]}")
print(f"Dimensions: {len(embeddings)}")
# Example usage:
knowledge_base = AgentKnowledge(
vector_db=PgVector(
db_url="postgresql+psycopg://ai:ai@localhost:5532/ai",
table_name="ollama_embeddings",
embedder=OllamaEmbedder(),
),
num_documents=2,
)
Params
Parameter
Type
Default
Description
model
str
"openhermes"
The name of the model used for generating embeddings.
dimensions
int
4096
The dimensionality of the embeddings generated by the model.
host
str
-
The host address for the API endpoint.
timeout
Any
-
The timeout duration for API requests.
options
Any
-
Additional options for configuring the API request.
client_kwargs
Optional[Dict[str, Any]]
-
Additional keyword arguments for configuring the API client. Optional.
ollama_client
Optional[OllamaClient]
-
An instance of the OllamaClient to use for making API requests. Optional.
Last updated