Combined KnowledgeBase
The CombinedKnowledgeBase combines multiple knowledge bases into 1 and is used when your app needs information using multiple sources.
Usage
We are using a local PgVector database for this example. Make sure it’s running
pip install pypdf bs4
knowledge_base.py
from bitca.knowledge.combined import CombinedKnowledgeBase
from bitca.vectordb.pgvector import PgVector
url_pdf_knowledge_base = PDFUrlKnowledgeBase(
urls=["pdf_url"],
# Table name: ai.pdf_documents
vector_db=PgVector(
table_name="pdf_documents",
db_url="postgresql+psycopg://ai:ai@localhost:5532/ai",
),
)
website_knowledge_base = WebsiteKnowledgeBase(
urls=["https://docs.bitcadata.com/introduction"],
# Number of links to follow from the seed URLs
max_links=10,
# Table name: ai.website_documents
vector_db=PgVector(
table_name="website_documents",
db_url="postgresql+psycopg://ai:ai@localhost:5532/ai",
),
)
local_pdf_knowledge_base = PDFKnowledgeBase(
path="data/pdfs",
# Table name: ai.pdf_documents
vector_db=PgVector(
table_name="pdf_documents",
db_url="postgresql+psycopg://ai:ai@localhost:5532/ai",
),
reader=PDFReader(chunk=True),
)
knowledge_base = CombinedKnowledgeBase(
sources=[
url_pdf_knowledge_base,
website_knowledge_base,
local_pdf_knowledge_base,
],
vector_db=PgVector(
# Table name: ai.combined_documents
table_name="combined_documents",
db_url="postgresql+psycopg://ai:ai@localhost:5532/ai",
),
)
Then use the knowledge_base
with an Agent:
agent.py
from bitca.agent import Agent
from knowledge_base import knowledge_base
agent = Agent(
knowledge=knowledge_base,
search_knowledge=True,
)
agent.knowledge.load(recreate=False)
agent.print_response("Ask me about something from the knowledge base")
Params
Parameter
Type
Default
Description
sources
List[AgentKnowledge]
-
List of Agent knowledge bases.
reader
Reader
-
A Reader
that converts the content of the documents into Documents
for the vector database.
vector_db
VectorDb
-
Vector Database for the Knowledge Base.
num_documents
int
5
Number of documents to return on search.
optimize_on
int
-
Number of documents to optimize the vector db on.
chunking_strategy
ChunkingStrategy
FixedSizeChunking
The chunking strategy to use.
Last updated