Gemini Embedder
The GeminiEmbedder
class is used to embed text data into vectors using the Gemini API. You can get one from here.
Usage
cookbook/embedders/gemini_embedder.py
from bitca.agent import AgentKnowledge
from bitca.vectordb.pgvector import PgVector
from bitca.embedder.google import GeminiEmbedder
embeddings = GeminiEmbedder().get_embedding("The quick brown fox jumps over the lazy dog.")
# Print the embeddings and their dimensions
print(f"Embeddings: {embeddings[:5]}")
print(f"Dimensions: {len(embeddings)}")
# Example usage:
knowledge_base = AgentKnowledge(
vector_db=PgVector(
db_url="postgresql+psycopg://ai:ai@localhost:5532/ai",
table_name="gemini_embeddings",
embedder=GeminiEmbedder(),
),
num_documents=2,
)
Params
Parameter
Type
Default
Description
dimensions
int
768
The dimensionality of the generated embeddings
model
str
models/text-embedding-004
The name of the Gemini model to use
task_type
str
-
The type of task for which embeddings are being generated
title
str
-
Optional title for the embedding task
api_key
str
-
The API key used for authenticating requests.
request_params
Optional[Dict[str, Any]]
-
Optional dictionary of parameters for the embedding request
client_params
Optional[Dict[str, Any]]
-
Optional dictionary of parameters for the Gemini client
gemini_client
Optional[Client]
-
Optional pre-configured Gemini client instance
Last updated