LogoLogo
TwitterWebsite
  • Getting Started
    • Introduction
    • Human UI
    • Examples
    • Monitoring
    • Workflows
    • Getting Help
  • Documentation
    • Humans
      • Introduction
      • Prompts
      • Tools
      • Knowledge
      • Memory
      • Storage
      • Structured Output
      • Reasoning
      • Teams
    • Models
      • Introduction
      • Open AI
      • Open AI Like
      • Anthropic Claude
      • AWS Bedrock Claude
      • Azure
      • Cohere
      • DeepSeek
      • Fireworks
      • Gemini
      • Gemini - VertexAI
      • Groq
      • HuggingFace
      • Mistral
      • Nvidia
      • Ollama
      • OpenRouter
      • Sambanova
      • Together
      • xAI
    • Tools
      • Introduction
      • Functions
      • Writing your own Toolkit
      • Airflow
      • Apify
      • Arxiv
      • AWS Lambda
      • BaiduSearch
      • Calculator
      • Cal.com
      • Composio
      • Crawl4AI
      • CSV
      • Dalle
      • DuckDb
      • DuckDuckGo
      • Email
      • Exa
      • Fal
      • File
      • Firecrawl
      • Giphy
      • Github
      • Google Calendar
      • Google Search
      • Hacker News
      • Jina Reader
      • Jira
      • Linear
      • Lumalabs
      • MLX Transcribe
      • ModelsLabs
      • Newspaper
      • Newspaper4k
      • OpenBB
      • Bitca
      • Postgres
      • Pubmed
      • Pyton
      • Replicate
      • Resend
      • Searxng
      • Serpapi
      • Shell
      • Slack
      • Sleep
      • Spider
      • SQL
      • Tavily
      • Twitter
      • Website
      • Yfinance
      • Zendesk
    • Knowledges
      • Introduction
      • ArXiv Knowledge Base
      • Combined KnowledgeBase
      • CSV Knowledge Base
      • CSV URL Knowledge Base
      • Docx Knowledge Base
      • Document Knowledge Base
      • JSON Knowledge Base
      • LangChain Knowledge Base
      • LlamaIndex Knowledge Base
      • PDF Knowledge Base
      • PDF URL Knowledge Base
      • S3 PDF Knowledge Base
      • S3 Text Knowledge Base
      • Text Knowledge Base
      • Website Knowledge Base
    • Chunking
      • Fixed Size Chunking
      • Agentic Chunking
      • Semantic Chunking
      • Recursive Chunking
      • Document Chunking
    • VectorDBS
      • Introduction
      • PgVector Agent Knowledge
      • Qdrant Agent Knowledge
      • Pinecone Agent Knowledge
      • LanceDB Agent Knowledge
      • ChromaDB Agent Knowledge
      • SingleStore Agent Knowledge
    • Storage
      • Introduction
      • Postgres Agent Storage
      • Sqlite Agent Storage
      • Singlestore Agent Storage
      • DynamoDB Agent Storage
      • JSON Agent Storage
      • YAML Agent Storage
    • Embeddings
      • Introduction
      • OpenAI Embedder
      • Gemini Embedder
      • Ollama Embedder
      • Voyage AI Embedder
      • Azure OpenAI Embedder
      • Mistral Embedder
      • Fireworks Embedder
      • Together Embedder
      • HuggingFace Embedder
      • Qdrant FastEmbed Embedder
      • SentenceTransformers Embedder
    • Workflows
      • Introduction
      • Session State
      • Streaming
      • Advanced Example - News Report Generator
  • How To
    • Install & Upgrade
    • Upgrade to v2.5.0
Powered by GitBook
LogoLogo

© 2025 Bitca. All rights reserved.

On this page
  • ​Prerequisites
  • ​Example
  • ​Toolkit Params
  • ​Toolkit Functions
Export as PDF
  1. Documentation
  2. Tools

Lumalabs

PreviousLinearNextMLX Transcribe

Last updated 4 months ago

LumaLabTools enables an Agent to generate media using the .

Prerequisites

export LUMAAI_API_KEY=***

The following example requires the lumaai library. To install the Lumalabs client, run the following command:

pip install -U lumaai

Example

The following agent will use Lumalabs to generate any video requested by the user.

cookbook/tools/lumalabs_tool.py

from bitca.agent import Agent
from bitca.llm.openai import OpenAIChat
from bitca.tools.lumalab import LumaLabTools

luma_agent = Agent(
    name="Luma Video Agent",
    llm=OpenAIChat(model="gpt-4o"),
    tools=[LumaLabTools()],  # Using the LumaLab tool we created
    markdown=True,
    debug_mode=True,
    show_tool_calls=True,
    instructions=[
        "You are an agent designed to generate videos using the Luma AI API.",
        "You can generate videos in two ways:",
        "1. Text-to-Video Generation:",
        "2. Image-to-Video Generation:",
        "Choose the appropriate function based on whether the user provides image URLs or just a text prompt.",
        "The video will be displayed in the UI automatically below your response, so you don't need to show the video URL in your response.",
    ],
    system_message=(
        "Use generate_video for text-to-video requests and image_to_video for image-based "
        "generation. Don't modify default parameters unless specifically requested. "
        "Always provide clear feedback about the video generation status."
    ),
)

luma_agent.run("Generate a video of a car in a sky")
Parameter
Type
Default
Description

api_key

str

None

If you want to manually supply the Lumalabs API key.

Function
Description

generate_video

Generate a video from a prompt.

image_to_video

Generate a video from a prompt, a starting image and an ending image.

Toolkit Params

Toolkit Functions

Lumalabs platform
​
​
​
​