Mistral Embedder

The MistralEmbedder class is used to embed text data into vectors using the Mistral API. Get your key from here.

Usage

cookbook/embedders/mistral_embedder.py

from bitca.agent import AgentKnowledge
from bitca.vectordb.pgvector import PgVector
from bitca.embedder.mistral import MistralEmbedder

embeddings = MistralEmbedder().get_embedding("The quick brown fox jumps over the lazy dog.")

# Print the embeddings and their dimensions
print(f"Embeddings: {embeddings[:5]}")
print(f"Dimensions: {len(embeddings)}")

# Example usage:
knowledge_base = AgentKnowledge(
    vector_db=PgVector(
        db_url="postgresql+psycopg://ai:ai@localhost:5532/ai",
        table_name="mistral_embeddings",
        embedder=MistralEmbedder(),
    ),
    num_documents=2,
)

Params

Parameter
Type
Default
Description

model

str

"mistral-embed"

The name of the model used for generating embeddings.

dimensions

int

1024

The dimensionality of the embeddings generated by the model.

request_params

Optional[Dict[str, Any]]

-

Additional parameters to include in the API request. Optional.

api_key

str

-

The API key used for authenticating requests.

endpoint

str

-

The endpoint URL for the API requests.

max_retries

Optional[int]

-

The maximum number of retries for API requests. Optional.

timeout

Optional[int]

-

The timeout duration for API requests. Optional.

client_params

Optional[Dict[str, Any]]

-

Additional parameters for configuring the API client. Optional.

mistral_client

Optional[MistralClient]

-

An instance of the MistralClient to use for making API requests. Optional.

Last updated