Mistral Embedder
The MistralEmbedder
class is used to embed text data into vectors using the Mistral API. Get your key from here.
Usage
cookbook/embedders/mistral_embedder.py
from bitca.agent import AgentKnowledge
from bitca.vectordb.pgvector import PgVector
from bitca.embedder.mistral import MistralEmbedder
embeddings = MistralEmbedder().get_embedding("The quick brown fox jumps over the lazy dog.")
# Print the embeddings and their dimensions
print(f"Embeddings: {embeddings[:5]}")
print(f"Dimensions: {len(embeddings)}")
# Example usage:
knowledge_base = AgentKnowledge(
vector_db=PgVector(
db_url="postgresql+psycopg://ai:ai@localhost:5532/ai",
table_name="mistral_embeddings",
embedder=MistralEmbedder(),
),
num_documents=2,
)
Params
model
str
"mistral-embed"
The name of the model used for generating embeddings.
dimensions
int
1024
The dimensionality of the embeddings generated by the model.
request_params
Optional[Dict[str, Any]]
-
Additional parameters to include in the API request. Optional.
api_key
str
-
The API key used for authenticating requests.
endpoint
str
-
The endpoint URL for the API requests.
max_retries
Optional[int]
-
The maximum number of retries for API requests. Optional.
timeout
Optional[int]
-
The timeout duration for API requests. Optional.
client_params
Optional[Dict[str, Any]]
-
Additional parameters for configuring the API client. Optional.
mistral_client
Optional[MistralClient]
-
An instance of the MistralClient to use for making API requests. Optional.
Last updated