The LangchainKnowledgeBase allows us to use a LangChain retriever or vector store as a knowledge base.
Usage
pip install langchain
langchain_kb.py
from bitca.agent import Agent
from bitca.knowledge.langchain import LangChainKnowledgeBase
from langchain.embeddings import OpenAIEmbeddings
from langchain.document_loaders import TextLoader
from langchain.text_splitter import CharacterTextSplitter
from langchain.vectorstores import Chroma
chroma_db_dir = "./chroma_db"
def load_vector_store():
state_of_the_union = ws_settings.ws_root.joinpath("data/demo/state_of_the_union.txt")
# -*- Load the document
raw_documents = TextLoader(str(state_of_the_union)).load()
# -*- Split it into chunks
text_splitter = CharacterTextSplitter(chunk_size=1000, chunk_overlap=0)
documents = text_splitter.split_documents(raw_documents)
# -*- Embed each chunk and load it into the vector store
Chroma.from_documents(documents, OpenAIEmbeddings(), persist_directory=str(chroma_db_dir))
# -*- Get the vectordb
db = Chroma(embedding_function=OpenAIEmbeddings(), persist_directory=str(chroma_db_dir))
# -*- Create a retriever from the vector store
retriever = db.as_retriever()
# -*- Create a knowledge base from the vector store
knowledge_base = LangChainKnowledgeBase(retriever=retriever)
agent = Agent(knowledge_base=knowledge_base, add_references_to_prompt=True)
conv.print_response("What did the president say about technology?")
Parameter
Type
Default
Description
retriever
Any
None
LangChain retriever.
vectorstore
Any
None
LangChain vector store used to create a retriever.
search_kwargs
dict
None
Search kwargs when creating a retriever using the langchain vector store.