Together Embedder
The TogetherEmbedder
can be used to embed text data into vectors using the Together API. Together uses the OpenAI API specification, so the TogetherEmbedder
class is similar to the OpenAIEmbedder
class, incorporating adjustments to ensure compatibility with the Together platform. Get your key from here.
Usage
cookbook/embedders/together_embedder.py
from bitca.agent import AgentKnowledge
from bitca.vectordb.pgvector import PgVector
from bitca.embedder.together import TogetherEmbedder
embeddings = TogetherEmbedder().get_embedding("The quick brown fox jumps over the lazy dog.")
# Print the embeddings and their dimensions
print(f"Embeddings: {embeddings[:5]}")
print(f"Dimensions: {len(embeddings)}")
# Example usage:
knowledge_base = AgentKnowledge(
vector_db=PgVector(
db_url="postgresql+psycopg://ai:ai@localhost:5532/ai",
table_name="together_embeddings",
embedder=TogetherEmbedder(),
),
num_documents=2,
)
Params
Parameter
Type
Default
Description
model
str
"nomic-ai/nomic-embed-text-v1.5"
The name of the model used for generating embeddings.
dimensions
int
768
The dimensionality of the embeddings generated by the model.
api_key
str
The API key used for authenticating requests.
base_url
str
"https://api.Together.ai/inference/v1"
The base URL for the API endpoint.
Last updated