All pages
Powered by GitBook
1 of 1

Loading...

Postgres Agent Storage

Bitcadata supports using PostgreSQL as a storage backend for Agents using the PgAgentStorage class.

​Usage

​Run PgVector

Install and run PgVector on port 5532 using:

storage.py

Params

Parameter
Type
Default
Description

db_engine

Optional[Engine]

None

Database engine to be used.

schema_version

int

1

Version of the schema, default is 1.

auto_upgrade_schema

bool

False

If true, automatically upgrades the schema when necessary.

table_name

str

-

Name of the table to be used.

schema

Optional[str]

"ai"

Schema name, default is "ai".

db_url

Optional[str]

None

docker desktop
​

Database URL, if provided.

docker run -d \
  -e POSTGRES_DB=ai \
  -e POSTGRES_USER=ai \
  -e POSTGRES_PASSWORD=ai \
  -e PGDATA=/var/lib/postgresql/data/pgdata \
  -v pgvolume:/var/lib/postgresql/data \
  -p 5532:5432 \
  --name pgvector \
  bitcadata/pgvector:16
from bitca.storage.agent.postgres import PgAgentStorage

db_url = "postgresql+psycopg://ai:ai@localhost:5532/ai"

# Create a storage backend using the Postgres database
storage = PgAgentStorage(
    # store sessions in the ai.sessions table
    table_name="agent_sessions",
    # db_url: Postgres database URL
    db_url=db_url,
)

# Add storage to the Agent
agent = Agent(storage=storage)